當(dāng)前位置:希尼爾首頁 > 譯海拾貝 > 譯文欣賞 >北電力大學(xué)教師學(xué)期授課計劃Teacher’s Semester Teaching Plan of Northeast Dianli University

               

                                      東北電力大學(xué)教師學(xué)期授課計劃

              Teacher’s Semester Teaching Plan of Northeast Dianli University

              原創(chuàng)文章:青島希尼爾翻譯公司 http://www.marshallsfreshproduce.com

              2014-11-17

              (非涉密內(nèi)容)

               

              Course Name

               

              Teacher

               

              Teaching Class

               

              Textbook

               

              Author

               

              Press

              China Renmin University Press

              Reference Book

               

              Teaching Method

              □blackboard writing      □multimedia    ■combination of these two methods

              Total Credit Hours

              39 Credit Hours

              Teaching Hours

              39 Credit Hours

              Experiment Credit Hours

              Credit Hour

              Computer Credit Hour

              Credit Hour

              Outdoor Sketch

              Credit Hour

              Investigation and Research

              Credit Hour

              Homework Times

               

              Check Times

               

              Tutorial Answering

               

              Check Type

              ■exam      □check

              Exam Form

              ■closed test      □open test      □half-open test     □oral test       □others

               

              Notes: 1. The semester teaching plan is filled by the teacher and takes into effect after the college or department principal affirms it.

              2. The semester teaching plan is in triplicate and submitted to the college or department for archives respectively. The teacher keeps one copy. The original is collected by the teaching secretary in unity two weeks before the semester begins. The collection sheet is submitted to the Division of Teaching Affairs with seal.

              3. To stabilize the teaching order, this plan cannot be changed in principle after it becomes effective. If it needs to be changed, please go through relevant adjusting procedures according to the procedure.

               

               

              Signature of the Teacher:                              **d**m**y  

               

              Signature of College (Department) Principal:              **d**m**y

               

               

              課程名稱

               

              任課教師

               

              授課班級

               

              使用教材

               

                 

               

              出 版 社

              人民大學(xué)出版社

              參考教材

              高等數(shù)學(xué)同濟(jì)大學(xué)數(shù)學(xué)系主編

              教學(xué)手段

              □板書      □多媒體    ■兩者結(jié)合

              總學(xué)時數(shù)

              39學(xué)時

              講授學(xué)時

              39學(xué)時

              實驗學(xué)時

              學(xué)時

              上機(jī)學(xué)時

              學(xué)時

              室外寫生

              學(xué)時

              采風(fēng)調(diào)研

              學(xué)時

              作業(yè)次數(shù)

               

              批改次數(shù)

               

              輔導(dǎo)答疑

               

              考核類型

              ■考試      □考查

              考試形式

              ■閉卷      □開卷      □半開卷      □口試       □其他

               

              說明:1.學(xué)期授課計劃由任課教師本人填寫,并由院(系)負(fù)責(zé)人審核無誤后,簽字生效。

              2.學(xué)期授課計劃一式三份,分別交院(系)存檔備查,任課教師留存,原件由教學(xué)干事于開學(xué)初前2周內(nèi)統(tǒng)一匯總,并在匯總表上蓋章后上交教務(wù)處。

              3.為穩(wěn)定教學(xué)秩序,本計劃生效后原則上不得變動,如確需變動,請按程序辦理相關(guān)調(diào)整手續(xù)。

               

               

               

               任 課 教 師 簽 字:                                      

               

               

               

              院(系)負(fù)責(zé)人簽字:                                    


              Class Hour Arrangement

              Teaching Week

              Class Times

              Teaching Contentsincluding chapter contents

              Teaching Method

              7

              1

              Chapter 1

              1.1 Function  1.2 Elementary Function 1.3 Common Economic Function

              Combination of blackboard writing and multimedia

              8

              2

               

              1.4 Sequence Limit   1.5 Function Limit

               

               

              3

               

              1.6 Infinity and Infinitesimal

               

              1.7 Limit Algorithm

              9

              4

               

              1.8 Limit Principle and Two Important Limits

               

              1.9 Infinitesimal Comparison

              10

              5

               

              1.10 Functional Continuity and Discontinuity

               

              1.11 Operation and Property of Continuous Function

              6

              Exercise Class

              Summarize briefly and explain typical exercises

              11

              7

               

              Chapter 2

              2.1 Derivative Definition  2.2Derivative Derivation Principle

              12

              8

               

              2.3 Higher Order Derivative

               

              2.4 Implicit Functional Derivative

              9

               

              2.5 Functional Differential

              13

              10

              Exercise Class

              Summarize briefly and explain typical exercises

              14

              11

              Chapter 3

              3.1 Mean Value Theorem

               

              3.2  L’Hospital Principle

              12

               

              3.4 Functional Monotonicity and Curve Convexity & Concavity

               

              3.5 Functional Extremum and Maximum & Minimum

              15

              13

               

              3.7 Derivative Application to Economics

              Exercise Class

              Summarize briefly and explain typical exercises

              16

              14

              Chapter 4

              4.1 Definition and Property of Indefinite Integral

               

              4.2 Integral by Substitution

              15

               

              4.3 Integral by Parts

              17

              16

              Chapter 5

              5.1 Definition of Definite Integral 5.2 Property of Definite Integral

              18

              17

               

              5.3 Basic Formulas of Calculus

               

              5.4 Integration by substitution and parts of Definite Integral

              18

              Exercise Class

              Summarize briefly and explain typical exercises


               課時安排

              教學(xué)周

              課次

              教學(xué)內(nèi)容(包括章、節(jié)內(nèi)容)

              教學(xué)手段

              7

              1

              第一章

              1.1 函數(shù)  1.2 初等函數(shù) 1.3 常用經(jīng)濟(jì)函數(shù)

              板書

              多媒體

              結(jié)合

              8

              2

               

              1.4 數(shù)列的極限   1.5 函數(shù)的極限

               

               

              3

               

              1.6 無窮大量與無窮小量

               

              1.7 極限的運(yùn)算法則

              9

              4

               

              1.8 極限存在的準(zhǔn)則與兩個重要極限

               

              1.9 無窮小的比較

              10

              5

               

              1.10 函數(shù)的連續(xù)與間斷

               

              1.11 連續(xù)函數(shù)的運(yùn)算與性質(zhì)

              6

              習(xí)題課

              內(nèi)容小結(jié)  講解典型習(xí)題

              11

              7

               

              第二章

              2.1 導(dǎo)數(shù)概念  2.2 導(dǎo)數(shù)的求導(dǎo)法則

              12

              8

               

              2.3 高階導(dǎo)數(shù)

               

              2.4 隱函數(shù)的導(dǎo)數(shù)

              9

               

              2.5 函數(shù)的微分

              13

              10

              習(xí)題課

              內(nèi)容小結(jié)  講解典型習(xí)題

              14

              11

              第三章

              3.1 中值定理

               

              3.2 洛必達(dá)法則

              12

               

              3.4函數(shù)的單調(diào)性與曲線的凸凹性

               

              3.5 函數(shù)的極值與最值

              15

              13

               

              3.7 導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)中的應(yīng)用

              習(xí)題課

              內(nèi)容小結(jié)  講解典型習(xí)題

              16

              14

              第四章

              4.1不定積分的概念與性質(zhì)

               

              4.2 換元積分

              15

               

              4.3 分部積分

              17

              16

              第五章

              5.1 定積分的概念5.2 定積分的性質(zhì)

              18

              17

               

              5.3 微積分基本公式

               

              5.4 定積分的換元積分法與分部積分法

              18

              習(xí)題課

              內(nèi)容小結(jié)  講解典型習(xí)題

               

              文章內(nèi)容由青島希尼爾翻譯公司翻譯

              中英對照 中英雙語翻譯 專業(yè)翻